Consequence of the Metal-Atom Clustering on the Magnetic Properties in Vanadium Sulfide V₅S₈

H.-J. Koo, D.-K. Seo, and M.-H. Whangbo¹

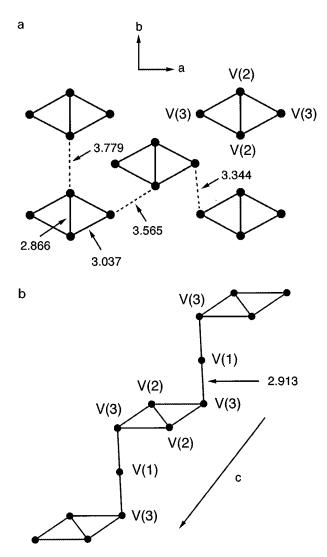
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Received March 15, 2001; in revised form May 11, 2001; accepted May 25, 2001

On the basis of qualitative bonding considerations and tightbinding electronic band structure calculations, we examined how the unequal spin moment distribution is related to the metalatom clustering in V_5S_8 and why V_5S_8 exhibits both localized and itinerant magnetic properties. © 2001 Academic Press

1. INTRODUCTION

The crystal structure (1-5), physical properties (6-15) and electronic structure (16) of vanadium sulfide V_5S_8 have been studied for over three decades. V₅S₈ consists of VS₂ layers that are made up of edge-sharing VS₆ octahedra. In each VS_2 layer the vanadium atoms (i.e., V(2) and V(3)) form a cluster-pattern of "isolated diamonds" (Fig. 1a). The structure of V_5S_8 results when vanadium atoms (i.e., V(1)) are introduced into the octahedral sites between adjacent VS₂ layers such that all the V₄ diamonds of adjacent layers are linked via the V(3)-V(1)-V(3) bridges as depicted in Fig. 1b. V_5S_8 is metallic at all temperatures (7), exhibits a Curie-Weiss paramagnetic behavior above 35 K (10), and orders antiferromagnetically below 35 K (12). Only the V(1)sites carry spin magnetic moments (6, 8, 12), and the effective moments in the paramagnetic state are $\sim 2.3 \,\mu_B$ per V(1) (6, 9, 10). NMR studies (11, 12) suggested that the ordered moments in the antiferromagnetic state are $0.22 \,\mu_{\rm B}$ per V(1), whereas the neutron diffraction study (13) indicated a much larger value (up to $1.50 \mu_B$ per V(1)). This discrepancy was resolved by the recent magnetization study (15), which found the ordered moments to be 1.50 μ_B per V(1) (i.e., 1.5 unpaired electrons on each V(1)). For V_5Se_8 , which is isostructural and isoelectronic with V_5S_8 , this study found a smaller ordered magnetic moment on each V(1) (i.e., $1.2 \mu_{\rm B}$). It has been pointed out that the magnetic properties of V_5S_8 are explained by considering both localized and itinerant magnetism (14).


So far there has been one report of electronic band structure study for V₅S₈. Knecht et al. (16) carried out spinpolarized electronic band structure calculations using the linear muffin-tin orbital method (LMTO) (17) to find that the Stoner criterion for spontaneous formation of a spin magnetic moment is fulfilled locally only for the V(1) site, but not for the V(2) and V(3) sites, and that the antiferromagnetic state of V_5S_8 is more stable than the metallic or ferromagnetic state. Their analysis also indicated that the spin magnetic moment of V(1) for the antiferromagnetic state persists above the Néel temperature hence giving rise to a Curie-Weiss paramagnetic behavior. These findings of Knecht et al. are in agreement with the experiment. Nevertheless, up to now, it is not well understood how the unequal spin moment distribution is related to the metal-atom clustering in V_5S_8 and why V_5S_8 exhibits both localized and itinerant magnetic properties. In the present work, we probe these questions by analyzing how the metal-atom clustering in V_5S_8 affects its *d*-block band structure on the basis of both qualitative metal-metal bonding considerations and tight binding electronic structure calculations for V_5S_8 using the extended Hückel method (18, 19). The atomic parameters used for the present calculations are summarized in Table 1.

2. NATURE OF THE *d*-BLOCK ELECTRONIC BAND STRUCTURE AROUND THE FERMI LEVEL

The plot of the density of states (DOS) calculated for V_5S_8 is presented in Fig. 2a, where the solid line represents the total DOS and the dotted line represents the partial DOS for the V 3d orbitals. The Fermi level lies at a sharp DOS peak of the d-block bands. The contribution of each nonequivalent vanadium atom to the sharp DOS peak at the Fermi level is shown in Fig. 2b, which reveals that the V(1) atom contribution dominates. The contribution of each vanadium atom to the DOS at the Fermi level, $N(E_f)$, decreases in the order V(1) > V(3) > V(2) (i.e., $N(E_f) = 4.15, 1.67$ and 0.93 states/atom for V(1), V(3), and V(2), respectively). Thus with the Stoner exchange-

¹To whom correspondence should be addressed.

FIG. 1. (a) Isolated diamond pattern of metal-atom clustering in the VS₂ layers of V₅S₈. (b) Linking between the V₄ "diamonds" of V₅S₈ via V(3)–V(1)–V(3) bridges. The heavy dots refer to vanadium atoms, and the metal-metal distances are given in Å.

correlation integral I = 0.35 eV for pure V (20), the Stoner enhancement factor $S = 1/[1 - N(E_f)]$ is calculated to be negative only for V(1), i.e., the Stoner criterion for spontaneous formation of a spin magnetic moment is fulfilled only for V(1). The V(1) atom contribution to the sharp DOS peak at the Fermi level is decomposed into three types of *d*orbitals in Fig. 2c (i.e., $x^2 - y^2$ and *xy*; *xz* and *yz*; z^2 under the coordinate scheme in which the *xy* plane is taken to be parallel to the VS₂ layers), which clearly shows that the in-plane *d* orbitals (i.e., $x^2 - y^2$ and *xy*) contribute most. All these findings of the present calculations are essentially the same as those obtained by Knecht *et al.* from LMTO calculations. We note that the *xz/yz* orbital contribution to the sharp DOS peak at the Fermi level is only slightly

 TABLE 1

 Exponents ζ_i and Valence Shell Ionization Potentials H_{ii} of Slater-Type Orbitals χ_i Used for Extended Hückel Tight-Binding Calculations^a

Atom	χi	H _{ii} (eV)	ζ_i	c_1^b	ζ'_i	c_2^b
v	4 <i>s</i>	- 8.81	1.300	1.0		
v	4p	-5.52	1.300	1.0		
v	3d	-11.0	4.750	0.4755	1.700	0.7052
S	2s	-20.0	2.122	1.0		
S	2p	- 13.3	1.827	1.0		

^{*a*} H_{*ii*}'s are the diagonal matrix elements $\langle \chi_i | \mathbf{H}^{\text{eff}} | \chi_i \rangle$, where \mathbf{H}^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $\mathbf{H}^{\text{eff}} = \langle \chi_i | \mathbf{H}^{\text{eff}} | \chi_j \rangle$, the weighted formula was used. See J. Ammeter, H.-B. Bürgi, J. Thibeault, and R. Hoffmann, J. Am. Chem. Soc. **100**, 3686 (1978).

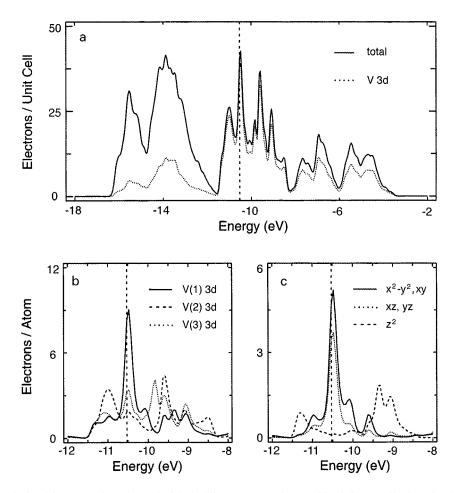
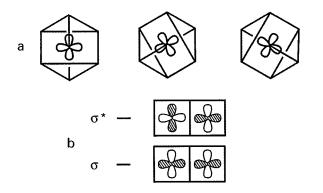
^bContraction coefficients used in the double-zeta Slater-type orbital.

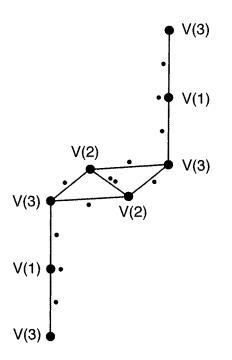
smaller than is the $x^2 - y^2/xy$ orbital contribution while the z^2 orbital contribution is negligible.

3. METAL-ATOM CLUSTERING AND *d*-ELECTRON COUNTING

In this section we examine why the Fermi level of V_5S_8 lies at a sharp DOS peak of its *d*-block bands and why the vanadium atom contribution to this DOS peak decreases in the order V(1) > V(3) > V(2). To answer these questions, we first consider how the metal-atom clustering pattern of V₅S₈ can be understood from the viewpoint of qualitative metalmetal bonding considerations. MQ_2 (M = transition metal, Q = O, S, Se, Te) layers made up of edge-sharing MQ_6 octahedra exhibit various metal-atom clustering patterns depending on the *d*-electron count of their transition metal cations (21, 22). As depicted in Fig. 3a, the t_{2g} orbitals of an MQ_6 octahedron are contained in the three different equatorial planes. For two adjacent edge-sharing octahedra, the interactions between the two t_{2g} orbitals contained in the common equatorial plane lead to sigma-bonding and sigma-antibonding (σ and σ^* , respectively) levels (Fig. 3b). In principle, each MQ_6 octahedron can form three different sets of σ and σ^* levels using its t_{2g} orbitals. When such a σ -level is filled with two d electrons, a two-center-twoelectron (2c-2e) bond results. The "zig-zag chains" or "isolated trimers" of the MQ_2 layers with d^2 ions as well as the "diamond-chains" with d^3 ions are all explained in terms of 2c-2e bonds (20, 21).

Let us now discuss how the metal-atom clustering pattern of V_5S_8 can be explained in terms of metal-metal bonding interactions. First, it is noticed that in each V(3)-V(1)-V(3)bridge the $V(1)S_6$ octahedron share its two *trans* faces with the two $V(3)S_6$ octahedra, and that V_5S_8 has nine *d* electrons per formula unit due to the oxidation state S^{2-} . To simplify our discussion, it will be assumed that there is one unpaired


FIG. 2. (a) DOS plots calculated for V_5S_8 , where the vertical dashed line represents the Fermi level. (b) Contribution of each nonequivalent vanadium atom to the DOS around the Fermi level. (c) Contribution of the *d* orbitals of V(1) to the DOS around the Fermi level.

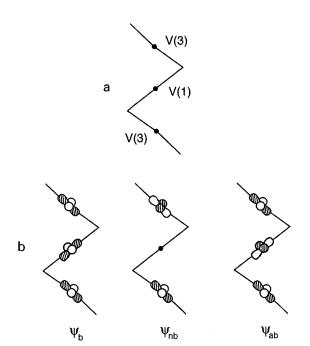

electron on each V(1). This means that V_5S_8 uses eight *d* electrons per formula unit to form seven metal-metal bonds, i.e., one V(2)–V(2), four V(2)–V(3), and two V(1)–V(3) bonds. Since the V(2)–V(2) bond is short (2.866 Å), it is

FIG. 3. (a) Three equatorial planes of a VS₆ octahedron containing the t_{2g} orbitals. (b) Interactions between two adjacent t_{2g} orbitals leading to sigma-bonding and sigma-antibonding levels.

reasonable to regard the V(2)-V(2) bond as a 2c-2e bond (Fig. 4). This leaves six d electrons to form the remaining six metal-metal bonds. The V(2)-V(3) and V(1)-V(3) bonds (3.037 and 2.913 Å, respectively) are not short enough to be a 2c-2e bond. If the V(2)-V(3) and V(1)-V(3) bonds each have the strength of a two-center one-electron bond (Fig. 4), then precisely six d electrons are needed to form four V(2)-V(3) and two V(1)-V(3) bonds. This suggests that each V(3)-V(1)-V(3) bridge is a three-center-two-electron (3*c*-2*e*) bond, while the V_4 rhombus consisting of four V(2)-V(3)bonds has two four-center-two-electron (4c-2e) bonds. Since the number of electrons in a two-center covalent bond is equally shared between the two centers, the qualitative d electron counting presented in Fig. 4 suggests that the V(1), V(2), and V(3) atoms possess 2, 2, 1.5 d electrons, respectively, and hence that the oxidation states of V(1), V(2), and V(3) are +3, +3, and +3.5, respectively. In the following, we probe further implications of this qualitative d electron counting from the viewpoint of metal-metal interactions involving their t_{2g} orbitals.

FIG. 4. Schematic representation of a V_8S_{28} cluster consisting of one V_4 diamond and two V(3)–V(1)–V(3) bridges. For simplicity, only the metal atom arrangement is shown as heavy dots. The small dots represent *d* electrons present on the V(1) atoms and in the V(2)–V(2), V(2)–V(3), and V(1)–V(3) metal-metal bonds.

The metal-atom clustering pattern of Fig. 1b indicates that each V(2) atom utilizes all three t_{2g} orbitals, but each V(3) atom utilizes two t_{2g} orbitals, to have metal-metal interactions within the VS₂ layer. From the viewpoint of two-center metal-metal interaction, each V(2)-V(3) bond uses two t_{2g} orbitals (Fig. 3b) so that altogether eight t_{2g} orbitals are involved in describing the metal-metal interactions of the four V(2)-V(3) bonds in a V₄ diamond. Let us assume that due to the weak metal-metal interactions, the linear combinations of these eight orbitals form only two four-center bonding levels (rather than four two-center bonding levels). When these bonding levels are each doubly occupied, we obtain two 4c-2e bonds that provide in average one electron per V(2)-V(3) bond (Fig. 4). Then six d electrons are necessary to account for one V(2)-V(2) and four V(2)-V(3) bonds of each V_4 diamond. This leaves three d electrons per formula unit to describe the metal-metal bonding of each V(3)-V(1)-V(3) bridge (Fig. 4).

Each V(3) atom has one t_{2g} orbital not used in forming the V₄ diamond. In each V(3)–V(1)–V(3) bridge such t_{2g} orbitals of the two V(3) atoms can interact with one of the three t_{2g} orbitals of V(1). At this point one may wonder what set of t_{2g} orbitals to employ for the V(1)S₆ octahedron. The t_{2g} orbitals of Fig. 3a constitute one set. When linearly combined, these orbitals generate an alternative set in which one member is represented primarily by the z^2 orbital aligned along the threefold rotational axis (23). For our dis-

FIG. 5. (a) Schematic projection view of a V(3)–V(1)–V(3) bridge. Each line segment containing a metal atom represents the equatorial plane containing its t_{2g} orbital. (b) Bonding, nonbonding, and antibonding levels ($\psi_b, \psi_{nb}, \text{and } \psi_{ab}$, respectively) of a V(3)–V(1)–V(3) bridge resulting from the three t_{2g} orbitals.

cussion, however, it is irrelevant which set we use (see below). For simplicity, let us employ the t_{2g} orbitals of Fig. 3a. Then, the three t_{2g} orbitals of a V(3)-V(1)-V(3) bridge making metal-metal interactions are contained in the equatorial planes shown in Fig. 5a, where the planes are projected as line segments. The linear combinations of the three orbitals contained in these equatorial planes produce the bonding, nonbonding, and antibonding levels ($\psi_{\rm b}, \psi_{\rm nb}$, and ψ_{ab} , respectively) of the V(3)–V(1)–V(3) bridge (Fig. 5b). If we use the alternative set of t_{2g} orbitals for V(1), as mentioned above, it is necessary to replace the t_{2g} orbital of V(1) in ψ_b and ψ_{ab} with the z^2 orbital of V(1). By symmetry, the z^2 orbital of V(1) cannot contribute to the nonbonding level ψ_{nb} . In short, the use of the alternative set of t_{2g} orbitals for V(1) does not change the bonding picture. The two t_{2g} orbitals of the V(1)S₆ octahedron not making the metal-metal interactions of a V(3)-V(1)-V(3) bridge are left over as nonbonding levels, which we will refer to as Φ_{nb} and Φ'_{nb} . When the bonding level ψ_b is doubly occupied, each V(3)-V(1)-V(3) linkage becomes a 3c-2e bond. Consequently, V_5S_8 has one electron per formula unit to fill the three nonbonding levels ψ_{nb} , Φ_{nb} , and Φ'_{nb} .

To confirm the correctness of the above *d* electron counting scheme and its implications, we performed molecular orbital calculations for the V_8S_{28} cluster that consists of a V₄ diamond and two V(3)–V(1)–V(3) bridges (Fig. 4). This cluster has four V(3) atoms. Two of them are part of the V₄ diamond, while the remaining clusters are part of other V₄ diamonds truncated away in our calculations. As anticipated from the counting scheme, our calculations show that the V₈S₂₈ cluster has five bonding levels resulting from one 2c-2e, two 4c-2e, and two 3c-2e bonding levels as well as six nonbonding levels resulting from two ψ_{nb} , two Φ_{nb} , and two Φ'_{nb} levels. The V₈S₂₈ cluster also has four more nonbonding levels, because each of the two terminal V(3) atoms do not use two t_{2g} orbitals due to the truncation.

4. DISCUSSION

The observation that V_5S_8 has one electron to fill the three nonbonding levels ψ_{nb} , Φ_{nb} , and Φ'_{nb} per formula unit has important implications. These levels constitute the highest occupied *d*-block bands of V_5S_8 . The latter should give rise to a sharp DOS peak at the Fermi level, because the nonbonding levels Φ_{nb} and Φ'_{nb} of each V(1)S₆ octahedron have contributions only from the V(1) atom and because the V(1) atoms are well separated from each other in V_5S_8 . By symmetry, the nonbonding level ψ_{nb} of each V(3)–V(1)–V(3) bridge has contributions only from the V(3) atoms. The interaction between the ψ_{nb} levels in V₅S₈ would not vanish because the t_{2g} orbitals of adjacent V(3) atoms within each VS₂ layer can interact weakly either directly or indirectly through a V(2) atom (Fig. 1a), and hence give rise to a slight spreading of the sharp DOS peak at the Fermi level and nonzero contribution of the V(2) atom to $N(E_f)$. To a first approximation, the three nonbonding levels ψ_{nb} , Φ_{nb} , and Φ'_{nb} are equally populated. This explains why the vanadium atom contribution to the sharp DOS peak at the Fermi level varies in the order V(1) > V(3) > V(2). It is most likely that the localized magnetic character of V₅S₈ stems from the two nonbonding t_{2g} levels (Φ_{nb} and Φ'_{nb}) of the V(1)S₆ octahedra at the Fermi level, and the itinerant magnetic character of V_5S_8 from the nonbonding levels (ψ_{nb}) of the V(3)–V(1)–V(3) bridges at the Fermi level.

5. CONCLUDING REMARKS

The present work shows that the unequal spin moment distribution and the occurrence of both localized and itinerant magnetisms in V_5S_8 are intimately related to the metal-atom clustering pattern in V_5S_8 . Qualitative considerations of the metal-metal bonding interactions indicate that the metal-atom clustering requires eight *d* electrons per

formula unit, thereby leaving one *d* electron per formula unit to fill the one nonbonding level of the V(3)–V(1)–V(3) bridge and two nonbonding t_{2g} levels of the V(1)S₆ octahedron. The latter provides a natural explanation for why both localized and itinerant magnetisms exist in V₅S₈.

ACKNOWLEDGMENT

Work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG05-86ER45259.

REFERENCES

- 1. S. Brunie and M. Chevreton, Cont. Rend. 258, 5847 (1964).
- F. Gronvold, H. Haraldsen, B. Pedersen, and T. Tufte, *Rev. Chim. Miner.* 6, 251 (1969).
- 3. A. B. de Vries and F. Jellinek, Rev. Chim. Miner. 11, 624 (1974).
- I. Kawada, M. Nakano-Onoda, M. Ishii, M. Saeki, and M. Nakahira, J. Solid State Chem. 15, 246 (1975).
- 5. W. Bensch and J. Koy, Inorg. Chim. Acta 206, 221 (1993).
- 6. A. B. de Vries and C. Haas, J. Phys. Chem. Solids 34, 651 (1973).
- H. Nozaki, Y. Ishizawa, M. Saeki, and M. Nakahira, *Phys. Lett. A* 54, 29 (1975).
- B. G. Silbernagel, R. B. Levy, and F. R. Gamble, *Phys. Rev. B* 11, 4563 (1975).
- H. Nishihara, H. Yasuoka, Y. Oka, K. Kosuge, and S. Kachi, J. Phys. Soc. Jpn. 42, 787 (1977).
- H. Nozaki, M. Umehara, Y. Ishizawa, M. Saeki, T. Mizoguchi, and M. Nakahira, J. Phys. Chem. Solids, 39, 851 (1978).
- Y. Kitaoka, H. Yasuoka, Y Oka, K. Kosuge, and S. Kachi, J. Phys. Soc. Jpn. 46, 1381 (1979).
- 12. Y. Kitaoka and H. Yasuoka, J. Phys. Soc. Jpn. 48, 1949 (1980).
- S. Funahashi, H. Nozaki, and I. Kawada, J. Phys. Chem. Solids 42, 1009 (1981).
- 14. A. Fujimori, M. Saeki, and H. Nozaki, Phys. Rev. B 44, 163 (1991).
- M. Naknishi, K. Yoshimura, K. Kosuge, T. Goto, T. Fujii, and J. Takada, J. Magn. Magn. Mater. 221, 301 (2000).
- K. Knecht, H. Ebert, and W. Bensch, J. Phys.: Condens. Matter 10, 9455 (1998).
- 17. O. K. Anderson and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
- 18. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc. 100, 6397 (1978).
- Our calculations were carried out by employing the CAESAR program package (J. Ren, W. Liang, and M.-H. Whangbo, "Crystal and Electronic Structure Analysis Using CAESAR," 1998, http://www. PrimeC.com).
- 20. J. F. Janak, Phys. Rev. B 16, 255 (1977).
- M.-H. Whangbo and E. Canadell, J. Am. Chem. Soc. 114, 9587 (1992), and the references cited therein.
- 22. C. Rovira and M.-H. Whangbo, Inorg. Chem. 32, 4094 (1993).
- M.-H. Whangbo, M. J. Foshee, and R. Hoffmann, *Inorg. Chem.* 19, 1723 (1980).